AN EXTENSION OF A THEOREM OF HARTOGS

BY L. R. HUNT

Abstract. Hartogs proved that every function which is holomorphic on the boundary of the unit ball in \mathbb{C}^n , n>1, can be extended to a function holomorphic on the ball itself. It is conjectured that a real k-dimensional \mathscr{C}^∞ compact submanifold of \mathbb{C}^n , k>n, is extendible over a manifold of real dimension (k+1). This is known for hypersurfaces (i.e., k=2n-1) and submanifolds of real codimension 2. It is the purpose of this paper to prove this conjecture and to show that we actually get C-R extendibility.

1. **Introduction.** Let M^k be a real k-dimensional compact \mathscr{C}^{∞} manifold embedded in \mathbb{C}^n , k, $n \ge 2$. Hartogs proved that every function holomorphic in an open neighborhood of M^{2n-1} can be extended to a function holomorphic in some open subset of \mathbb{C}^n . Bochner proved a similar theorem for functions which satisfy the induced Cauchy-Riemann equations on M^{2n-1} . It has been conjectured that any real k-dimensional compact \mathscr{C}^{∞} submanifold of \mathbb{C}^n is extendible to a manifold of real dimension (k+1) if k > n. This has been proved for real-analytic submanifolds of \mathbb{C}^n in [3] and generic C-R submanifolds in [2]. It is the purpose of this paper to prove the conjecture with extendibility being replaced by C-R extendibility.

The early work for the higher codimensional study was done by Bishop [1], Wells [6] and Greenfield [2]. A recent article due to Nirenberg [4] led to the results in this paper.

2. **Definitions.** Let M^k be a real k-dimensional \mathscr{C}^{∞} manifold embedded in \mathbb{C}^n , $k, n \ge 2$. Suppose $T(M^k)$ is the tangent bundle to M^k , and J denotes the almost complex tensor $J: T(\mathbb{C}^n) \to T(\mathbb{C}^n)$, with $J^2 = -I$. Then we define

$$H_p(M^k) = T_p(M^k) \cap JT_p(M^k),$$

the vector space of holomorphic tangent vectors to M^k at p. Then $H_p(M^k)$ is the maximal complex subspace of $T_p(\mathbb{C}^n)$ which is contained in $T_p(M^k)$. It is well known that

$$\max (k-n, 0) \leq \dim_{C} H_{p}(M^{k}) \leq [k/2].$$

Presented to the Society, March 1, 1971; received by the editors March 17, 1971 and, in revised form, August 2, 1971.

AMS 1969 subject classifications. Primary 3220, 3225; Secondary 3227.

Key words and phrases. Extendibility of holomorphic functions, C-R extendibility, the Levi form.

There is another way of examining almost complex structures which we shall use. Let f denote the embedding of M^k into C^n , and let J(f) be the complex Jacobian of f. If $q = \min(n, k)$, a point p in M^k is said to be an exceptional point of order l, $0 \le l \le \lfloor k/2 \rfloor - \max(k-n, 0)$ if the complex rank of $J(f)|_p$ is equal to q-l.

A point p in M^k is generic if p is an exceptional point of order 0. The manifold M^k is locally generic at p if every point in some open neighborhood of p is generic, and is locally C-R at p if every point in some open neighborhood of p is an exceptional point of the same order.

Suppose M^k is locally C-R at p and $H_p(M^k)$ is nonempty. Then we define the Levi form at any x near p

$$L_x(M^k): H_x(M^k) \to (Tx(M^k) \otimes C)/(H_x(M^k) \otimes C)$$

by $L_x(M^k)(t) = \pi_x\{[Y, \overline{Y}]_x\}$, where Y is a local section of the fiber bundle $H(M^k)$ (with fiber $H_x(M^k)$) such that $Y_x = t$, $[Y, \overline{Y}]_x$ is the Lie bracket evaluated at x, and

$$\pi_x: T_x(M^k) \otimes C \rightarrow (T_x(M^k) \otimes C)/(H_x(M^k) \otimes C)$$

is the projection.

Denote by $\mathcal{O}_{C^n} = \mathcal{O}$ the sheaf of germs of holomorphic functions on C^n . Let K be a compact subset of C^n and V an open subset of C^n containing K. We set

$$\mathcal{O}(K) = \inf_{V \supset K} \lim \mathcal{O}(V),$$

where $\mathcal{O}(V)$ is the Fréchet algebra of holomorphic functions on V. We say that K is *extendible* to a connected set $K' \supseteq K$ if the map $r : \mathcal{O}(K') \to \mathcal{O}(K)$ is onto.

Suppose $f \in \mathscr{C}^{\infty}(M^k)$. We say f is a C-R function at $p \in M^k$ if $\overline{X}f(y) = 0$, for y near p and X any section of $H(M^k)$. If M^k is locally C-R at p it suffices to verify the equality just for X in a local basis for $H(M^k)$ at p. We note that our manifold need not be globally C-R. Thus we may have points which are not locally C-R. But obviously, the set of such points is nowhere dense in M^k .

DEFINITION 2.1. Let $f \in \mathscr{C}^{\infty}(M^k)$. Then f is a C-R function on M^k if f is a C-R function at each point of M^k . The C-R functions are denoted by CR (M^k) .

We say that M^k is C-R extendible to a connected set $K = M^k \cup K'$, where $K' \neq \emptyset$, if for every $f \in CR$ (M^k) there exists an $F: M^k \cup K' \to C$ continuous so that $F|_{M^k} = f$ and $F|_{K'} \in \mathcal{O}(K')$. We observe that C-R extendibility implies extendibility.

Let K be a compact subset of C^n . We shall call a point $x \in K$ a holomorphic peak point if there exists a function $f \in \mathcal{O}(K)$ such that, for any $y \in K - \{x\}$, we have |f(y)| < |f(x)|.

3. Local equations and the Levi form. Again let M^k be a real k-dimensional \mathscr{C}^{∞} manifold embedded in C^n , k, $n \ge 2$. Suppose M^k is locally C-R at p, and p is an exceptional point of order l. If k > n the local equations of M^k in a neighborhood of p are (after a suitable choice of coordinates)

$$z_{1} = x_{1} + ih_{1}(x_{1}, \dots, x_{2(n-l)-k}, w_{1}, \dots, w_{k-n+l})$$

$$\vdots$$

$$z_{2(n-l)-k} = x_{2(n-l)-k} + ih_{2(n-l)-k}(x_{1}, \dots, x_{2(n-l)-k}, w_{1}, \dots, w_{k-n+l})$$

$$z_{2(n-l)-k+1} = u_{1} + iv_{1} = w_{1}$$

$$\vdots$$

$$z_{n-l} = u_{k-n+l} + iv_{k-n+l} = w_{k-n+l}$$

$$z_{n-l+1} = g_{1}(x_{1}, \dots, x_{2(n-l)-k}, w_{1}, \dots, w_{k-n+l})$$

$$\vdots$$

$$z_{n} = g_{l}(x_{1}, \dots, x_{2(n-l)-k}, w_{1}, \dots, w_{k-n+l}),$$

where $x_1, \ldots, x_{2(n-l)-k}, u_1, v_1, \ldots, u_{k-n+l}, v_{k-n+l}$ are local coordinates for M^k in a neighborhood of p vanishing at p, and z_1, \ldots, z_n are coordinates for C^n vanishing at p. The real-valued functions $h_1, \ldots, h_{2(n-l)-k}$ as well as the complex-valued functions g_1, \ldots, g_l vanish to order 2 at p. Because M^k is locally C-R at p, the functions g_1, \ldots, g_l must be complex-analytic functions of w_1, \ldots, w_{k-n+l} (see [3]).

Letting $g_j = g'_j + ig''_j$, $j = 1, \ldots, l$, we find from [5] that the Levi form vanishes at p if and only if the complex Hessians at p of each of the functions $h_1, \ldots, h_{2(n-l)-k}$, $g'_1, g''_1, \ldots, g'_l, g''_l$ with respect to the variables w_1, \ldots, w_{k-n+l} all have zero eigenvalues.

Fix $x_1, \ldots, x_{2(n-1)-k}$ and expand each g_j in a Taylor series in w_1, \ldots, w_{k-n+1}

$$g_j = \sum_{\alpha} a_{j,\alpha} w^{\alpha},$$

where $w = (w_1, \ldots, w_{k-n+l})$ and $\alpha = (\alpha_1, \ldots, \alpha_{k-n+l})$. Replacing z_{n-l+j} by $z_{n-l+j} - \sum_{\alpha} a_{j,\alpha} w^{\alpha}$, we have that $z_{n-l+1} = 0, \ldots, z_n = 0$ in our new local equations. Thus the Levi form vanishes at p if and only if the complex Hessians at p of each of the functions $h_1, \ldots, h_{2(n-l)-k}$ are all zero matrices.

Suppose M^k is compact in C^n . It is shown in [5] that there exists an open set of holomorphic peak points on M^k which is nonempty. By the remarks before Definition 2.1, we can find a holomorphic peak point $p \in M^k$ such that p is an exceptional point of some order l, and M^k is locally C-R at p. Assume p=0 and M^k near p is given by the equations in (1). Wells proves that through p we can put a hyperplane which intersects M^k at only the point p. If $z_j = x_j + iy_j$, $j = 1, \ldots, 2(n-l)-k, n-l+1, \ldots, n$, we can assume the hyperplane is defined by $y_1 = 0$ (the information about the g_j 's in this section forces our arbitrary choice to $y_1, \ldots, y_{2(n-l)-k}$).

Let Q denote the 1-dimensional real subspace of $T_0(\mathbb{C}^n)$ generated by $\partial/\partial y_1$. Set

 $W = Q \oplus T_0(M^k)$ and let π be the projection from C^n to W. Under this projection the manifold M^k projects to a manifold with local equations

$$z_{1} = x_{1} + ih_{1}(x_{1}, \dots, x_{2(n-l)-k}, w_{1}, \dots, w_{k-n+l})$$

$$z_{2} = x_{2}$$

$$\vdots$$

$$z_{2(n-l)-k} = x_{2(n-l)-k}$$

$$z_{2(n-l)-k+1} = u_{1} + iv_{1} = w_{1}$$

$$\vdots$$

$$z_{n-l} = u_{k-n+l} + iv_{k-n+l} = w_{k-n+l}.$$

Wells shows that

$$\frac{\partial^2 h_1}{\partial x_1^2}, \dots, \frac{\partial^2 h_1}{\partial x_{2(n-1)-k}^2}, \frac{\partial^2 h_1}{\partial u_1^2}, \dots, \frac{\partial^2 h_1}{\partial u_{k-n+1}^2}, \frac{\partial^2 h_1}{\partial v_1^2}, \dots, \frac{\partial^2 h_1}{\partial v_{k-n+1}^2}$$

are all >0 on some open neighborhood U of p in M^k . In particular

$$\frac{\partial^2 h_1}{\partial w_1 \ \partial \overline{w}_1}, \dots, \frac{\partial^2 h_1}{\partial w_{k-n+1} \ \partial \overline{w}_{k-n+1}}$$

are positive on the set U. By diagonalizing, we find that the Hessian of h_1 with respect to w_1, \ldots, w_{k-n+1} is positive definite.

- 4. The main result. Assume M^k is a real k-dimensional \mathscr{C}^{∞} manifold embedded in \mathbb{C}^n , and M^k is locally C-R at $p \in M^k$. Suppose at least one of the following conditions is satisfied.
- (I) There is a real hypersurface containing M^k whose Levi form restricted to $H(M^k)$ has at p at least one positive and one negative eigenvalue.
- (II) There is a real hypersurface containing M^k whose Levi form restricted to $H(M^k)$ has at p all its eigenvalues of the same sign different from zero.

Then we have the following theorem due to Nirenberg [4].

THEOREM 4.1. Let M^k be locally C-R at $p \in M$ and assume either (I) or (II) holds. Then M^k is locally C-R extendible to a manifold \widetilde{M} of real dimension one higher than that of M^k .

We are now able to prove the main result.

THEOREM 4.2. Let M^k be a real k-dimensional compact \mathscr{C}^{∞} manifold embedded in \mathbb{C}^n , $k > n \ge 2$. Then M^k is C-R extendible to a real (k+1)-dimensional submanifold of \mathbb{C}^n .

Proof. We showed in the previous section that there exists a point $p \in M^k$ such that:

- (i) M^k is locally C-R at p,
- (ii) M^k is given by the local equations (1) near p, and
- (iii) the complex Hessian of the function h_1 with respect to the variables w_1 , ..., w_{k-n+l} has all positive eigenvalues at p.

Consider the real hypersurface containing M^k defined by the function $\rho = y_1 - h_1$. The Levi form of this hypersurface restricted to $H(M^k)$ is the negative of the complex Hessian of h_1 with respect to the variables w_1, \ldots, w_{k-n+1} . Then this hypersurface satisfies condition (II) at the point p, and we apply Theorem 4.1. Q.E.D.

- THEOREM 4.3. Let M^k be a real k-dimensional compact \mathscr{C}^{∞} manifold embedded in \mathbb{C}^n , $k > n \ge 2$. Then M^k is extendible to a real (k+1)-dimensional submanifold of \mathbb{C}^n .
- REMARK 1. The manifold \tilde{M} of Theorem 1 can be taken to have \mathscr{C}^q structure, $1 \le q < \infty$.
- REMARK 2. If $k \le n$, then there are examples of totally real submanifolds which are always holomorphically convex. Thus, from the standpoint of dimension, Theorems 4.2 and 4.3 are the best possible.

REFERENCES

- 1. E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1-21. MR 34 #369.
- 2. S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 275-314. MR 38 #6097.
- 3. L. R. Hunt, Real-analytic submanifolds of complex manifolds, Proc. Amer. Math. Soc. 29 (1971), 69-74.
 - 4. R. Nirenberg, On the H. Lewy extension phenomenon (to appear).
- 5. R. O. Wells, Jr., Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold, Ann. Scuola Norm. Sup. Pisa (3) 23 (1969), 347-361. MR 39 #7141.
- 6. ——, Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262. MR 36 #5392.

DEPARTMENT OF MATHEMATICS, TEXAS TECH UNIVERSITY, LUBBOCK, TEXAS 79409